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ABSTRACT

Given that a relational database is a critical component of many soft-
ware applications, it is important to thoroughly test the integrity
constraints of a database’s schema, because they protect the data.
Although automated test data generation techniques ameliorate
the otherwise manual task of database schema testing, they often
create test suites that contain many, sometimes redundant, tests.
Since prior work presented a hybridized test suite reduction tech-
nique, called STICCER, that beneficially combined Greedy test suite
reduction with a test merging method customized for database
schemas, this paper experimentally evaluates a different hybridiza-
tion. Motivated by prior results showing that test suite reduction
with the Harrold-Gupta-Soffa (HGS) method can be more effective
than Greedy at reducing database schema test suites, this paper eval-
uates an HGS-driven STICCER variant with both a computational
and a human study. Using 34 database schemas and tests created by
two test data generators, the results from the computational study
reveal that, while STICCER is equally efficient and effective when
combined with either Greedy or HGS, it is always better than the
isolated use of either Greedy or HGS. Involving 27 participants, the
human study shows that, when compared to test suites reduced by
HGS, those reduced by a STICCER-HGS hybrid allow humans to
inspect test cases faster, but not always more accurately.
ACM Reference Format:

Abdullah Alsharif, Gregory M. Kapfhammer, and Phil McMinn. 2020. Hy-
brid Methods for Reducing Database Schema Test Suites: Experimental
Insights from Computational and Human Studies. In IEEE/ACM 1st In-
ternational Conference on Automation of Software Test (AST ’20), October
7–8, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3387903.3389305

1 INTRODUCTION

Many software applications rely on a relational database for crit-
ical data storage, thus leading industry experts to advise that they
be rigorously tested to ensure their correctness [6, 17]. Developing
a relational database involves the challenging task of specifying a
schema that has integrity constraints designed to protect the data in
the database. Since the incorrect definition of the database schema
(i.e., omitting constraints or adding the wrong constraints) can lead
to a failure that corrupts the database’s state [42], testers can use
test data generators, like AVM-D and Domino, to automatically
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create tests for a schema’s integrity constraints [2]. Although these
generators speed up the testing process, the test suites that they
create may have many tests with numerous, and sometimes similar,
database interactions, suggesting the need for test suite reduction.

While there are general-purpose methods for reducing a test
suite [59], our prior work presented STICCER, a hybrid method
that combined greedy test suite reduction with a merging approach
for database schema testing [4]. Yet, since other hybridizations are
also possible, this paper presents two empirical studies investigating
test suite reduction techniques for relational database schemas:
Computational Study. When comparing two well-known test
suite reduction methods, called Greedy [10] and Harrold-Gupta-
Soffa (HGS) [20], our prior work showed that HGS achieved an
average level of reduction of 46% and 50% for database schema test
suites generated by AVM-D and Domino, respectively [4]. This
result represents a greater level of reduction than that achieved by
the Greedy method, which was 43% and 48% reduction for tests
resulting from the same test generators. The first set of research
questions posed by the Computational Study in Section 3 of this
paper, therefore, explore the theme characterized by the general
question “Are further efficiencies possible if we reduce test suites prior
to merging with STICCER using HGS, as opposed to Greedy? ”.
Human Study. As we explain in Section 2, the human oracle costs
arising from inspecting tests are an important aspect of research in
automated test suite generation, that hitherto remains unevaluated
in the context of hybrid techniques like STICCER. The second set
of research questions studied in this paper, which appear as part
of the Human Study in Section 4, concern the matter posed by the
general question “While STICCER produces test suites with fewer test
cases and statements overall, does it lower human oracle costs; or are
the tests more difficult to understand, therefore increasing costs? ”.

Using 34 relational database schemas, two state-of-the-art test
data generators, and the two hybridized and two traditional test
suite reduction methods, this paper’s Computational Study finds
that, while the hybridized methods outperform the stand-alone use
of either Greedy or HGS, there is, surprisingly, no significant benefit
to usingHGS instead of Greedy in STICCER. Since this paper’s focus
is on the benefits that may arise from combining HGS and STICCER,
the Human Study asked 27 participants to act as testers who had
to manually inspect test suites that had been reduced by either
STICCER-HGS or HGS. This paper’s Human Study reveals that,
compared to those produced by HGS, the reduced test suites made
by STICCER-HGS help humans to complete test inspection tasks
faster, but not more accurately. Along with confirming the benefits
that accrue from hybridizing STICCER with either Greedy or HGS,
this paper’s two studies suggest that, while test suite reduction
may make certain testing tasks — like assessing test suite adequacy
through mutation analysis — more efficient, it will not always
benefit the humans testers who must inspect the reduced test suites.
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2 BACKGROUND

Relational Database Schemas. A relational database manage-
ment system (RDBMS), such as SQLite [50] or Postgres [45], is
software that hosts and manages one or more relational databases.
Each database is defined by a schema through SQL statements, as
shown by Figure 1’s example. A schema defines one or more tables,
each involving a set of columns (i.e., “id” through to “date_of_birth”
in the example) that describe the data (in this instance, informa-
tion about an individual person) to be stored in the table’s rows.
Each column has a data type (e.g., int, VARCHAR — a string with a
defined number of characters, and date — a day, month, and year).
Finally, relational database schemas feature integrity constraints
that a developer specifies in the definition of an individual column
or the wider table. Integrity constraints play a significant role in
maintaining the reliability, consistency, and coherency of data [25].
In the example, both the id and email columns must store distinct
values, since they are constrained with PRIMARY KEY and UNIQUE con-
straints, respectively. Columns marked with “NOT NULL” cannot store
NULL values. Finally, the CHECK constraint declaration only allows one
selected value from the list in the gender column for each row.

Mistakes made by developers when defining integrity constraints
(e.g., omitting constraints or adding the wrong constraints) can
manifest themselves in software failures that corrupt data [17]. For
instance, not having a UNIQUE on the email column in the example
of Figure 1 would mean different (or duplicate) people in different
rows of the database potentially having the same email address.
Conversely, a developer unintentionally adding a UNIQUE on the first
name column would obstruct the database recording information
where more than one person has the same first name. Furthermore,
different relational database management systems have subtly dif-
ferent, inconsistent interpretations of the SQL standard, of which
developers may not necessarily be aware. For example, SQLite
allows the insertion of NULL into primary keys in certain circum-
stances [51], yet PostgreSQL forbids this behavior [45]. As such,
developers need to test their schemas to check their assumptions.
However, the common expectation is that schemas are implicitly
correct [5, 6, 13, 46], and as a result, their testing is often neglected.
Yet, for all of these reasons, industry experts recommend thorough
testing of the integrity constraints in a database schema [17].

Test Generation for Integrity Constraints. McMinn et al. de-
fined a family of coverage criteria for testing the specification of
integrity constraints in relational database schemas [42]. These
criteria specify test requirements that involve exercising each con-
straint as true and false — that is, designing test cases with SQL
INSERT statements and values to either satisfy an integrity constraint
(i.e., the RDBMS accepts and stores the data) or violate it (i.e., the
RDBMS rejects the data). McMinn et al. found that the combination
of three different criteria — “Clause-Based Active Integrity Con-
straint Coverage” (ClauseAICC), “Active Unique Column Coverage”
(AUCC), and “Active Null Column Coverage” (ANCC) — was the
best at identifying systematically seeded faults [42]. The Clause-
AICC criterion requires exercising the roles of individual columns
within composite keys when exercising each constraint, as well
as the individual clauses of CHECK constraints. AUCC exercises all
columns with unique and non-unique (i.e., identical) values, while
ANCC exercises each column with NULL and non-NULL values.

CREATE TABLE person (

id int NOT NULL PRIMARY KEY,

last_name varchar(45) NOT NULL,

first_name varchar(45) NOT NULL,

email varchar(45) NOT NULL UNIQUE,

gender varchar(6) NOT NULL,

date_of_birth date NOT NULL,

CHECK (gender IN (’Male’, ’Female’, ’Other’)));

Figure 1: An Example of a Relational Database Schema

The SchemaAnalyst tool [43] automates the generation of test
data to satisfy coverage criteria for integrity constraints, providing
two state-of-the-art test generation techniques called AVM-D [28]
and Domino [2]. Both of these generators populate a sequence of
INSERT statements with test data designed to satisfy a test coverage
requirement. AVM-D is an implementation of the Alternating Vari-
able Method [19, 29–31, 39], a search-based technique that uses a
fitness function to guide a search for test data. AVM-D maintains
one test data vector that it modifies throughout the search, initial-
izing it to “default” values (e.g., zero for integers and empty strings
for text). Modifications are guided by traditional search-based dis-
tance metrics used for predicate testing (e.g., those that appear in
branches of a program) [53]. For example, if a test requirement
needs two identical values x = y (e.g., to satisfy a FOREIGN KEY), a
distance metric is formulated as d = |x − y |, where d calculates
the closeness of the two values x and y, and where d = 0 indicates
that the search has found identical values. Domino is based on a
random test data generation. Domino “tunes” data to a specific
test requirement [2], primarily through copying values in an INSERT

statement for one table column to another. This enables it to gener-
ate matching values to satisfy FOREIGN KEYs and violate PRIMARY KEYs.
Conversely, random values are used to generate non-matches (for
example, to violate FOREIGN KEYs or satisfy PRIMARY KEYs), or to satisfy
and violate the predicates embedded in CHECK constraints.

Since the coverage criteria for testing integrity constraints in-
volve many test requirements, the test suites generated for them
may be similarly large in terms of the number of tests [4]. This pa-
per aims to improve the capability of reduction methods to decrease
test suite size while still maintaining their level of test coverage.
Test Suite Reduction Methods. Reducing test suites while main-
taining coverage is a problem equivalent to that of minimal set
cover and as such is NP-complete [24]. However, many techniques
exist that are effective at producing approximate solutions. Here, we
introduce the ones that we have implemented into SchemaAnalyst.

The Greedy method (also known as “additional greedy”) [59]
works by populating an initially empty test suite through iteratively
selecting the test cases from the original test suite that cover the
most test requirements currently uncovered by the reduced suite.

TheHGS method developed by Harrold, Gupta, and Soffa [20]
works by creating intermediate test suites containing test cases that
cover each individual test requirement. HGS starts by adding test
cases to the reduced test suite from the intermediate test suites with
cardinality 1 (i.e., test cases that cover only that test requirement).
HGS then “marks” test suites that also cover these requirements, so
that they are no longer considered by further steps of the algorithm.
HGS then proceeds to repeatedly select test cases in unmarked
test suites of increasing cardinality. In this way, HGS avoids sub-
optimal traps that the Greedymethod can fall into that are caused by
selecting test cases that cover many of the same test requirements.
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Figure 2: Phases that Generate, Reduce, and Merge Tests

Finally, STICCER is a test suite reduction method developed es-
pecially for reducing test suites designed to test relational database
schema integrity constraints [4]. STICCER stands for Schema Test
Integrity Constraints Combination for Efficient Reduction. First,
STICCER takes a test suite reduced using, for example, the Greedy
method [4]. It then proceeds to merge the tests in the reduced suite
by “sticking” sub-sequences of statements from different test cases
together to produce a new replacement test case. STICCER pro-
duces a “candidate” merged test tm by first removing the setup
steps from t2, and then appending the remaining test statements to
the end of t1. If tm has the same coverage as the original two tests
t1 and t2, then STICCER replaces t1 and t2 with tm in the test suite.
By doing this, STICCER not only produces a test suite with fewer
test cases, it produces a test suite with a smaller number of total
statements overall: by re-using a test t1 to prepare the database
state for another test t2, it can discard the now redundant “setup”
steps in t2 that essentially performed the same task. Alsharif et
al. [4] found that database schema test suites reduced by Greedy
and subsequently merged with STICCER were up to 2.5 times faster
to run than those test suites reduced by using traditional methods
such HGS, or using just Greedy by itself, and 5 times faster than
the original test suite. In Section 3, we study a new hybridization
of STICCER that uses HGS prior to merging, instead of Greedy.
Human Oracle Costs. Automatically generated tests based on
white-box coverage criteria, such as those used in this paper, tend
not to be accompanied by a specification or model of correct sys-
tem behavior. As such, testers often need to perform one of three
manual steps: (1) evaluate the outcomes of each test case every time
it runs, so as to ascertain whether it passed or failed; (2) manually
add assert statements to the tests to automatically perform this
checking in the future; or (3) check the assert statements that the
test generation tool may have automatically generated, but which
merely reflect current system behavior and may therefore be incor-
rect. The effort, or cost, associatedwith this activity — that is tedious
and error-prone one for humans when the test suites are of a signif-
icant size — is referred to as the “human oracle cost” [1, 7, 18, 41].

Section 4 reports on a Human Study that characterizes the oracle
costs associated with HGS and STICCER hybridized with HGS.

3 COMPUTATIONAL STUDY

The Computational Study focuses on a previously unstudied con-
figuration of STICCER that uses HGS— as opposed to the previously
studied version that used Greedy [4] — to reduce test suites before
merging them. Figure 2 shows the different configurations of the
test suite generation and reduction pipeline this section evaluates.

In the first phase, test suite generation, we use SchemaAnalyst to
generate test suites using either AVM-D or Domino. The second
stage comprises reduction with either the HGS or Greedy method.
The third phase involves merging test cases with STICCER, result-
ing in two more test suite reduction techniques. We refer to the
configuration of STICCER in the experiments that uses HGS prior

Table 1: The Relational Database Schemas Studied

Integrity Constraints

Schema Tables Columns Check ForeignKey NotNull PrimaryKey Unique Total

ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
BrowserCookies 2 13 2 1 4 2 1 10
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
CustomerOrder 7 32 1 7 27 7 0 42
DellStore 8 52 0 0 39 0 0 39
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 9 24
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
IsoFlav_R2 6 40 0 0 0 0 5 5
iTrust 42 309 8 1 88 37 0 134
JWhoisServer 6 49 0 0 44 6 0 50
MozillaExtensions 6 51 0 0 0 2 5 7
MozillaPermissions 1 8 0 0 0 1 0 1
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
StudentResidence 2 6 3 1 2 2 0 8
UnixUsage 8 32 0 7 10 7 0 24
Usda 10 67 0 0 31 0 0 31
WordNet 8 29 0 0 22 8 1 31

Total 186 1044 38 49 357 122 24 590

to merging, and which forms the focus of this particular study,
as “STICCER-HGS”. Meanwhile, we refer to the configuration of
STICCER that uses Greedy instead, which was the main feature
of our previous paper [4], as “STICCER-GRD”. Finally, for brevity,
we hereafter refer to both of the reduction and merging phases
when discussing STICCER as simply “reduction”, since both reduce
the size of the eventual test suites produced by STICCER-HGS and
STICCER-GRD. We aim to answer three research questions:
RQ1: Reduction Effectiveness. How does STICCER-HGS com-
pare at reducing test suites to STICCER-GRD, HGS, and Greedy?
RQ2: Fault Finding Capability. How does the fault-finding ca-
pability of test suites reduced by STICCER-HGS compare to those
reduced by STICCER-GRD, HGS, and Greedy?
RQ3: Reduction and Mutation Analysis Runtime. How does
the overall time taken to (a) reduce test suites and then (b) perform
mutation analysis on them compare when using either STICCER-
HGS or STICCER-GRD as the test suite reduction technique?
We began by using the publicly available SchemaAnalyst tool [43] to
generate test suites with both Domino and AVM-D for each of our
subject schemas detailed in Table 1. We configured both test data
generators to fulfill the “ClauseAICC+ANCC+AUCC” combination
of coverage criteria (introduced in Section 2), with a termination cri-
terion of 100,000 test data evaluations per test requirement (should
test data not be found earlier than this limit). Since bothDomino and
AVM-D are based on random number generation, we used Schema-
Analyst to repeat test generation 30 times. We then used Schema-
Analyst’s implementations of STICCER-HGS, STICCER-GRD, HGS,
and Greedy to reduce each of the test suites, recording the exe-
cution time taken. Studying the adequacy assessment process for
the reduced test suites, we next used SchemaAnalyst to run muta-
tion analysis on each of them, applying Wright et al.’s mutation
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operators [57], again recording the time taken. To conduct our ex-
periments, we used a Linux workstation with a quad-core 2.4GHz
CPU and 12GB of RAM, running Ubuntu 14.04 with a 3.13.0–44
GNU/Linux 64-bit kernel; generating test data for the SQLite ver-
sion 3.8.2 RDBMS with the “in-memory” mode setting enabled.

We answer RQ1 by recording (a) number of test cases and (b)
total number of statements (i.e., INSERTs) in each test suite before
and after reduction with each of the four reduction techniques.
Our motivation behind measuring the total number of statements
in a test suite, in addition to its size in terms of test cases, is to
rule out the possibility that STICCER simply produces fewer test
cases by merely appending them together, and thereby giving a
false impression of effectiveness. We calculate reduction using the
equation (1− |RTS | ÷ |OTS |) × 100; where RTS and OTS correspond
to the reduced test suite and the original test suite, respectively.
The numbers we apply in the calculation depend on whether we
want to know (a) the reduction in the number of test cases, in
which case RTS and OTS are the number of tests in each respective
suite; or (b) the reduction in the number of statements, in which
case RTS and OTS are the total number of statements in each test
suite. In our answer, we report the median values for the 30 test
suites generated for each schema with each test data generation
technique (i.e., AVM-D and Domino), reduced by each of the four
reduction techniques. We answer RQ2 by reporting the median
mutation scores reported by SchemaAnalyst of each set of 30 gen-
erated test suites, in both unreduced form and following reduction
by either STICCER-HGS, STICCER-GRD, HGS, and Greedy. Finally,
we answer RQ3 by reporting the median time to reduce the 30 test
suites, and the median time taken by the mutation analysis of them,
comparing it to the median time taken for mutation analysis to
execute with the original, unreduced test suites.

Statistical Analysis.As part of our answers to RQs 1–3, Tables 2–5
report if a technique was statistically better or worse than STICCER-
HGS by presenting its numerical values in boldface. We further
annotate a value with “ ” if STICCER-HGS performed significantly
better when applying the Mann-Whitney U-test with α = 0.05 and
with “#” if it was significantly worse. Finally, we annotate a value
with “⋆” if the underlying distributions of the data for a technique
have a large Vargha and Delaney Â effect size (i.e., Â < 0.29 or
> 0.71 [55]) when compared with that of STICCER-HGS.

Threats to Validity. While our set of subjects may not generalize
the claims of our study to all possible schemas, wemade every effort
in our previous work [2, 4, 40, 42, 44, 56] to develop as diverse a sub-
ject set as possible, featuring different types of integrity constraints
and a wide range of complexity (1–42 tables, 3–309 columns, and 1–
134 constraints). Other threats include the stochastic behavior of the
test data generators, which is subject to the chance effects of random
number generation; and the timing of the test generation techniques
and mutation analysis, which are subject, to, for example, interfer-
ence from operating system events. We mitigated both of these pos-
sibilities by repeating the experiments 30 times and by using non-
parametric statistical tests to analyze the results, since we cannot
make any assumptions about the normality of our results’ distribu-
tions. We mitigated the possibility of defects in the implementation
of STICCER-HGS and the code to run our experiments with the

Successful Merge of Domino Test Cases

id last_name first_name gender date_of_birth

t1 -458 'ada' 'djd' 'Male' '2008-06-10' ✓

t2 0 'ib' 'edvbewwyg' 'Other' '1992-03-17' ✓

Unsuccessful Merge of AVM-D Test Cases

id last_name first_name gender date_of_birth

t1 0 '' '' 'Male' '2000-01-01' ✓

t2 0 '' '' 'Other' '2000-01-01' ✗

Figure 3: STICCER’s Attempts to Merge Test Cases

SchemaAnalyst tool by writing and applying unit tests, which are
available at https://github.com/schemaanalyst/schemaanalyst.

It is also possible that the ordering of test cases passed to STIC-
CER for merging could be a considered a potential threat to validity,
as this could affect which test cases are merged with one another,
and hence the results we obtain. Yet, we experimented with random-
izing and reversing the order of test cases passed to STICCER from
HGS (“irreplaceable” tests first) and Greedy (most test-requirement-
covering tests first), but did not observe significant differences in
the results. Therefore, we continued to use the default order of tests
provided by the reduction techniques prior to merging.
Answer to RQ1: Reduction Effectiveness. Tables 2 and 3 show
the median reduction effectiveness of each technique at decreasing
the number of test cases for each schema and the total number
of statements (i.e., database INSERTs) in the test cases of the test
suites, respectively. Both tables report effectiveness for test suites
generated by AVM-D and Domino, because, as the tables reveal,
the reduction techniques vary in performance depending on which
test generation technique was initially used. Overall, we see four
different trends in the two tables, which we explain next.

Firstly, STICCER-HGS significantly outperformsHGS andGreedy,
regardless of initial test generation technique, just as STICCER-GRD
did in our previous study [4]. Table 2 shows that STICCER-HGS is
significantly better than HGS and Greedy at reducing the number of
test cases for all schemas, while Table 3 shows that STICCER-HGS
also significantly reduces the total number of statements in the
tests suites compared to HGS and Greedy, for all but a few schemas.

Secondly, STICCER-HGS is, overall, more effective at reducing
Domino-generated test suites than those made by AVM-D. Table 2
shows an overall reduction mean of 72% with Domino-generated
test suites, compared to 67% with AVM-D-generated suites. As we
previously observed in our prior paper [4], the same is true for
STICCER-GRD, where the averages are 74% with Domino com-
pared to 66% with AVM-D. Our explanation for this phenomenon
centers on the data values that each test data generator typically
generates. AVM-D repeats “default” values such as empty strings
and zero numerical values, aiming to keep test cases as simple as
possible. However, this frustrates STICCER’s attempts to merge
INSERT statements, since the use of the same values across different
test cases can inadvertently trigger primary key and UNIQUE con-
straint violations when two tests are combined. Figure 3 illustrates
this phenomenon with an example. One of the test requirements
that needs to be preserved by the merged test case in this instance
are unique values for the gender field. Yet, the re-use of zero as an id

value for the two tests that STICCER is attempting to merge in the
AVM-D case results in a primary key violation. As such, the merged
test case is not equivalent to the two original test cases, where the
database state would have been reset between their execution.
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Table 2: Median Test Case Reduction Effectiveness

Refer to Section 3 for the calculation of the higher-is-better test case reduction effectiveness metric, and the meaning of the symbols ,#, and⋆. The numbers in brackets
indicate the median number of statements in the reduced test suite for a schema, followed by the median number of statements in its original test suite, respectively.

AVM-D Domino

Schema STICCER-HGS STICCER-GRD HGS Greedy STICCER-HGS STICCER-GRD HGS Greedy

ArtistSimilarity 63% (7/19) 63% (7/19) ⋆ 42% (11/19) ⋆ 32% (13/19) 63% (7/19) 63% (7/19) ⋆ 32% (13/19) ⋆ 37% (12/19)
ArtistTerm 65% (15/43) 65% (15/43) ⋆ 37% (27/43) ⋆ 30% (30/43) 63% (16/43) ⋆#65% (15/43) ⋆ 30% (30/43) ⋆ 30% (30/43)
BankAccount 68% (12/37) 68% (12/37) ⋆ 43% (21/37) ⋆ 38% (23/37) 70% (11/37) ⋆ 70% (11/37) ⋆ 49% (19/37) ⋆ 43% (21/37)
BookTown 63% (100/269) ⋆ 58% (113/269) ⋆ 46% (144/269) ⋆ 38% (167/269) 65% (94/269) ⋆#68% (87/269) ⋆ 49% (138/269) ⋆ 42% (156/269)
BrowserCookies 63% (26/71) ⋆ 62% (27/71) ⋆ 59% (29/71) ⋆ 56% (31/71) 77% (16/71) 76% (17/71) ⋆ 56% (31/71) ⋆ 55% (32/71)
Cloc 90% (4/40) 90% (4/40) ⋆ 50% (20/40) ⋆ 48% (21/40) 75% (10/40) ⋆#85% (6/40) ⋆ 57% (17/40) ⋆ 51% (20/40)
CoffeeOrders 64% (32/90) 64% (32/90) ⋆ 42% (52/90) ⋆ 41% (53/90) 70% (27/90) ⋆#74% (23/90) ⋆ 47% (48/90) ⋆ 44% (50/90)
CustomerOrder 44% (71/126) ⋆ 40% (76/126) ⋆ 37% (79/126) ⋆ 33% (84/126) 64% (45/126) ⋆ 63% (46/126) ⋆ 39% (77/126) ⋆ 35% (82/126)
DellStore 86% (24/177) 86% (24/177) ⋆ 38% (110/177) ⋆ 35% (115/177) 67% (59/177) ⋆#71% (52/177) ⋆ 42% (102/177) ⋆ 41% (105/177)
Employee 71% (11/38) ⋆#74% (10/38) ⋆ 50% (19/38) ⋆ 50% (19/38) 82% (7/38) 80% (8/38) ⋆ 61% (15/38) ⋆ 61% (15/38)
Examination 72% (30/107) 72% (30/107) ⋆ 52% (51/107) ⋆ 51% (52/107) 85% (16/107) ⋆#87% (14/107) ⋆ 64% (38/107) ⋆ 64% (38/107)
Flights 71% (18/62) ⋆ 69% (19/62) ⋆ 58% (26/62) ⋆ 58% (26/62) 71% (18/62) 71% (18/62) ⋆ 53% (29/62) ⋆ 52% (30/62)
FrenchTowns 38% (33/53) ⋆#40% (32/53) ⋆ 34% (35/53) ⋆ 36% (34/53) 58% (22/53) 60% (21/53) ⋆ 34% (35/53) ⋆ 32% (36/53)
Inventory 72% (5/18) ⋆ 67% (6/18) ⋆ 44% (10/18) ⋆ 39% (11/18) 72% (5/18) 78% (4/18) ⋆ 56% (8/18) ⋆ 56% (8/18)
IsoFlav_R2 76% (43/177) ⋆ 75% (45/177) ⋆ 50% (88/177) ⋆ 49% (90/177) 78% (39/177) ⋆#81% (34/177) ⋆ 62% (66/177) ⋆ 60% (70/177)
Iso3166 58% (5/12) 58% (5/12) ⋆ 33% (8/12) ⋆ 33% (8/12) 58% (5/12) 58% (5/12) ⋆ 42% (7/12) ⋆ 33% (8/12)
iTrust 58% (631/1517) ⋆ 57% (646/1517) ⋆ 44% (847/1517) ⋆ 43% (872/1517) 80% (297/1517) ⋆#85% (235/1517) ⋆ 50% (754/1517) ⋆ 49% (776/1517)
JWhoisServer 39% (97/158) ⋆ 37% (100/158) ⋆ 35% (103/158) ⋆ 33% (106/158) 65% (56/158) ⋆#70% (48/158) ⋆ 37% (99/158) ⋆ 35% (103/158)
MozillaExtensions 75% (57/229)  75% (57/229) ⋆ 50% (115/229) ⋆ 60% (92/229) 82% (42/229) ⋆#85% (35/229) ⋆ 64% (83/229) ⋆ 63% (84/229)
MozillaPermissions 73% (9/33) 73% (9/33) ⋆ 48% (17/33) ⋆ 48% (17/33) 79% (7/33) ⋆#88% (4/33) ⋆ 64% (12/33) ⋆ 58% (14/33)
NistDML181 82% (7/38) ⋆ 79% (8/38) ⋆ 53% (18/38) ⋆ 53% (18/38) 79% (8/38)  76% (9/38) ⋆ 58% (16/38) ⋆ 55% (17/38)
NistDML182 90% (19/190) ⋆ 89% (20/190) ⋆ 57% (81/190) ⋆ 57% (82/190) 88% (22/190) #89% (21/190) ⋆ 62% (73/190) ⋆ 60% (76/190)
NistDML183 82% (6/34) 82% (6/34) ⋆ 53% (16/34) ⋆ 47% (18/34) 76% (8/34) 76% (8/34) ⋆ 53% (16/34) ⋆ 50% (17/34)
NistWeather 64% (20/56)  64% (20/56) ⋆ 43% (32/56) ⋆ 45% (31/56) 80% (11/56) ⋆#82% (10/56) ⋆ 46% (30/56) ⋆ 45% (31/56)
NistXTS748 62% (6/16) 62% (6/16) ⋆ 44% (9/16) ⋆ 38% (10/16) 75% (4/16) 69% (5/16) ⋆ 50% (8/16) ⋆ 50% (8/16)
NistXTS749 63% (13/35) ⋆ 57% (15/35) ⋆ 51% (17/35) ⋆ 46% (19/35) 69% (11/35) 69% (11/35) ⋆ 49% (18/35) ⋆ 49% (18/35)
Person 50% (10/20) 50% (10/20) ⋆ 40% (12/20) ⋆ 40% (12/20) 70% (6/20) ⋆#80% (4/20) ⋆ 35% (13/20) ⋆ 30% (14/20)
Products 67% (17/52) 67% (17/52) ⋆ 48% (27/52) ⋆ 44% (29/52) 70% (16/52) 69% (16/52) ⋆ 46% (28/52) ⋆ 44% (29/52)
RiskIt 56% (110/250) ⋆ 51% (122/250) ⋆ 48% (130/250) ⋆ 43% (142/250) 64% (91/250) 63% (92/250) ⋆ 52% (120/250) ⋆ 48% (129/250)
StackOverflow 93% (12/171) 93% (12/171) ⋆ 50% (86/171) ⋆ 48% (89/171) 78% (38/171) ⋆#84% (28/171) ⋆ 60% (68/171) ⋆ 60% (68/171)
StudentResidence 62% (13/34) 62% (13/34) ⋆ 44% (19/34) ⋆ 41% (20/34) 74% (9/34) 74% (9/34) ⋆ 47% (18/34) ⋆ 47% (18/34)
UnixUsage 56% (64/147) ⋆ 52% (70/147) ⋆ 47% (78/147) ⋆ 43% (84/147) 71% (42/147) ⋆#73% (40/147) ⋆ 50% (73/147) ⋆ 48% (76/147)
Usda 88% (30/247) 88% (30/247) ⋆ 44% (139/247) ⋆ 40% (147/247) 72% (70/247) ⋆#78% (54/247) ⋆ 51% (121/247) ⋆ 49% (125/247)
WordNet 59% (48/118) ⋆ 58% (50/118) ⋆ 44% (66/118) ⋆ 42% (69/118) 60% (47/118) ⋆#64% (43/118) ⋆ 44% (66/118) ⋆ 40% (71/118)

Minimum 38% 37% 33% 30% 58% 58% 30% 30%
Mean 67% 66% 46% 43% 72% 74% 50% 48%
Maximum 93% 93% 59% 60% 88% 89% 64% 64%

The issue of test case diversity also helps to explain the third
and fourth trends that we observe: STICCER-HGS is better, overall,
at reducing AVM-D-generated test suites compared to STICCER-
GRD — but conversely, STICCER-GRD is better, overall, at reducing
DOMINO-generated test suites. We see both of these phenomena in
the summary averages of Tables 2 and 3 — and also when comparing
the respective number of schemas STICCER-HGS is significantly
better at reducing compared to STICCER-GRD, and vice versa. In
the AVM-D case, its choice of repetitious values hinders STICCER’s
merging, resulting in the ultimate winner being strongly correlated
to the effectiveness of the original reduction technique used — that
is, HGS in the case of STICCER-HGS, which is more effective than
Greedy, used by STICCER-GRD. However, STICCER can work more
effectively with the diverse test cases generated by Domino, and
furthermore, it seems that the larger reduced test suites supplied
by Greedy add to this diversity, allowing STICCER’s merging to
operate more effectively. Hence, STICCER-GRD performs signifi-
cantly better than STICCER-HGS in more cases than it does not
for Domino-generated test suites. In the cases that it does not,
STICCER-HGS has the advantage of leveraging the more effective
reduction provided by HGS. The “lift” of diversity that STICCER-
GRD gets from less effective Greedy reduction can be seen for the
AVM-D-generated test suites also, resulting in STICCER-HGS not
being significantly better for every database schema.

The BookTown database schema provides a good illustration of
both of these two trends. As shown in Table 2, the unreduced test
suite has 269 test cases, which, in the AVM-D case are reduced to
144 and 167 test cases by HGS and Greedy respectively, and then
further to 100 and 113 test cases following merging. STICCER can
reduce the test suite by more test cases in its merging phase for
STICCER-GRD (54, as opposed to 44 achieved by STICCER-HGS),

but the initial advantage given to STICCER-HGS by virtue of using
HGS for reduction prior to merging is not completely overturned.
Conversely, in the Domino case, the original test suite size is re-
duced to 138 and 156 test cases by HGS and Greedy, respectively.
However, because of the larger, more diverse pool of test cases
produced by Domino, the STICCER-GRD technique overturns the
initial advantage of HGS, reducing the test suite down to a final
size of 87 test cases, as opposed to 94 for STICCER-HGS.

In conclusion for RQ1, like STICCER before it, STICCER-HGS sig-
nificantly outperforms both HGS and Greedy. The results show
that STICCER-HGS is more effective with test suites generated
using AVM-D, while STICCER-GRD is more effective for test suites
generated with Domino. In general, STICCER’s merging is more
effective with the diverse test data values in Domino-generated test
cases, and works better with the slightly larger pool of test cases
that Greedy tends to provide to the test merging mechanism.

Answer to RQ2: Fault Finding Capability. Table 4 shows the
schemas that experienced significant differences in mutation score
following test suite reduction. The data shows that test suites gener-
ated by Domino were immune to significant differences following
reduction with any technique. Since RQ1 showed how diverse val-
ues were beneficial for reduction, this data would suggest they
also protect test suites against the erosion of their mutation score,
despite the test suites concerned having fewer test cases and fewer
statements overall. AVM-D-generated test suites, without the bene-
fit of the same extent of diversity, did suffer in decreases in muta-
tion score after reduction. AVM-D-generated and STICCER-HGS-
reduced test suites received significantly worse mutation scores for
seven schemas (each accompanied by a large effect size) than the
original test suite, although the differences were not greater than 4%.
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Table 3: Median Statement Reduction Effectiveness

Refer to Section 3 for the calculation of the higher-is-better test case reduction effectiveness metric, and the meaning of the symbols ,#, and⋆. The numbers in brackets
indicate the median number of statements in the reduced test suite for a schema, followed by the median number of statements in its original test suite, respectively.

AVM-D Domino

Schema STICCER-HGS STICCER-GRD HGS Greedy STICCER-HGS STICCER-GRD HGS Greedy

ArtistSimilarity 52% (21/44)  48% (23/44) ⋆ 45% (24/44) ⋆ 34% (29/44) 50% (22/44) 50% (22/44) ⋆ 35% (28/44) ⋆ 39% (27/44)
ArtistTerm 59% (51/124)  56% (54/124) ⋆ 45% (68/124) ⋆ 36% (79/124) 54% (56/124) ⋆#56% (54/124) ⋆ 36% (79/124) ⋆ 36% (79/124)
BankAccount 59% (33/80)  56% (35/80) ⋆ 44% (45/80) ⋆ 38% (50/80) 57% (34/80) 57% (34/80) ⋆ 50% (40/80) ⋆ 44% (44/80)
BookTown 52% (194/403) ⋆ 44% (225/403) ⋆ 47% (215/403) ⋆ 38% (250/403) 51% (197/403) ⋆ 49% (206/403) ⋆ 48% (208/403) ⋆ 42% (233/403)
BrowserCookies 65% (61/175) 64% (63/175) ⋆ 64% (63/175) ⋆ 62% (66/175) 69% (54/175) 69% (55/175) ⋆ 60% (70/175) ⋆ 59% (71/175)
Cloc 63% (22/60)  62% (23/60) ⋆ 50% (30/60) ⋆ 48% (31/60) 58% (25/60) ⋆#61% (24/60) ⋆ 55% (27/60) ⋆ 48% (31/60)
CoffeeOrders 61% (106/273)  61% (107/273) ⋆ 48% (143/273) ⋆ 45% (149/273) 64% (98/273) 65% (96/273) ⋆ 51% (132/273) ⋆ 49% (139/273)
CustomerOrder 43% (273/475) ⋆ 39% (290/475) ⋆ 39% (288/475) ⋆ 36% (305/475) 59% (196/475) ⋆ 56% (208/475) ⋆ 41% (279/475) ⋆ 36% (302/475)
DellStore 58% (118/281)  56% (123/281) ⋆ 42% (162/281) ⋆ 39% (172/281) 48% (145/281) ⋆#50% (141/281) ⋆ 47% (150/281) ⋆ 44% (156/281)
Employee 58% (22/53) ⋆#60% (21/53) ⋆ 47% (28/53) ⋆ 47% (28/53) 62% (20/53) 62% (20/53) ⋆ 57% (23/53) ⋆ 57% (23/53)
Examination 66% (77/229)  66% (78/229) ⋆ 52% (111/229) ⋆ 50% (114/229) 73% (62/229) ⋆#74% (60/229) ⋆ 64% (83/229) ⋆ 63% (86/229)
Flights 71% (40/137) ⋆ 70% (41/137) ⋆ 66% (46/137) ⋆ 66% (46/137) 58% (57/137) 58% (58/137) ⋆ 55% (62/137) ⋆ 55% (62/137)
FrenchTowns 47% (85/161) ⋆#50% (81/161) ⋆ 43% (91/161) ⋆ 47% (86/161) 53% (76/161) 52% (77/161) ⋆ 43% (92/161) ⋆ 40% (96/161)
Inventory 57% (12/28) ⋆ 54% (13/28) ⋆ 43% (16/28) ⋆ 39% (17/28) 61% (11/28)  57% (12/28) ⋆ 54% (13/28) ⋆ 54% (13/28)
IsoFlav_R2 63% (102/274) ⋆ 62% (104/274) ⋆ 50% (136/274) ⋆ 50% (136/274) 64% (100/274) 64% (100/274) ⋆ 59% (111/274) ⋆ 58% (116/274)
Iso3166 47% (10/19) 47% (10/19) ⋆ 37% (12/19) ⋆ 37% (12/19) 47% (10/19)  42% (11/19) 47% (10/19) ⋆ 37% (12/19)
iTrust 57% (946/2204) ⋆ 56% (978/2204) ⋆ 50% (1103/2204) ⋆ 48% (1142/2204) 56% (978/2204) ⋆#57% (940/2204) ⋆ 52% (1064/2204) ⋆ 50% (1101/2204)
JWhoisServer 40% (153/256) ⋆ 38% (158/256) 40% (153/256) ⋆ 38% (158/256) 45% (141/256) ⋆#47% (136/256) ⋆ 43% (145/256) ⋆ 41% (152/256)
MozillaExtensions 63% (130/356) #71% (105/356) ⋆ 50% (179/356) 63% (130/356) 67% (119/356) ⋆#69% (110/356) ⋆ 61% (140/356) ⋆ 60% (144/356)
MozillaPermissions 62% (19/50) 62% (19/50) ⋆ 48% (26/50) ⋆ 48% (26/50) 62% (19/50) ⋆#66% (17/50) ⋆ 60% (20/50) ⋆ 54% (23/50)
NistDML181 68% (25/78) ⋆ 68% (25/78) ⋆ 53% (37/78) ⋆ 55% (35/78) 68% (25/78)  65% (28/78) ⋆ 56% (34/78) ⋆ 54% (36/78)
NistDML182 74% (100/384) ⋆ 73% (102/384) ⋆ 61% (150/384) ⋆ 61% (151/384) 75% (97/384) 74% (98/384) ⋆ 63% (144/384) ⋆ 61% (149/384)
NistDML183 68% (22/68)  65% (24/68) ⋆ 53% (32/68) ⋆ 46% (37/68) 65% (24/68) 62% (26/68) ⋆ 51% (33/68) ⋆ 50% (34/68)
NistWeather 60% (48/120) #61% (47/120) ⋆ 49% (61/120) ⋆ 52% (58/120) 63% (44/120) 63% (44/120) ⋆ 52% (58/120) ⋆ 51% (58/120)
NistXTS748 48% (12/23) 48% (12/23) ⋆ 39% (14/23) ⋆ 35% (15/23) 57% (10/23) 52% (11/23) ⋆ 48% (12/23) ⋆ 48% (12/23)
NistXTS749 60% (29/73) ⋆ 53% (34/73) ⋆ 53% (34/73) ⋆ 47% (39/73) 59% (30/73) 58% (30/73) ⋆ 49% (37/73) ⋆ 49% (37/73)
Person 53% (14/30) 53% (14/30) ⋆ 50% (15/30) ⋆ 50% (15/30) 43% (17/30) ⋆#47% (16/30) 43% (17/30) ⋆ 37% (19/30)
Products 67% (48/144)  65% (50/144) ⋆ 56% (63/144) ⋆ 53% (68/144) 63% (53/144)  62% (54/144) ⋆ 53% (68/144) ⋆ 51% (70/144)
RiskIt 55% (312/687) ⋆ 50% (342/687) ⋆ 51% (336/687) ⋆ 47% (366/687) 57% (297/687)  54% (318/687) ⋆ 53% (322/687) ⋆ 50% (346/687)
StackOverflow 65% (90/257)  64% (93/257) ⋆ 50% (129/257) ⋆ 48% (134/257) 62% (98/257) ⋆#66% (88/257) ⋆ 57% (110/257) ⋆ 57% (111/257)
StudentResidence 57% (31/72)  56% (32/72) ⋆ 46% (39/72) ⋆ 42% (42/72) 60% (29/72) 60% (29/72) ⋆ 49% (37/72) ⋆ 49% (37/72)
UnixUsage 61% (232/595) ⋆ 58% (252/595) ⋆ 51% (293/595) ⋆ 47% (313/595) 69% (187/595) ⋆#70% (178/595) ⋆ 54% (274/595) ⋆ 52% (287/595)
Usda 61% (149/381)  59% (157/381) ⋆ 46% (206/381) ⋆ 42% (220/381) 55% (171/381) ⋆#59% (157/381) ⋆ 52% (181/381) ⋆ 50% (190/381)
WordNet 52% (93/192) ⋆ 50% (96/192) ⋆ 49% (98/192) ⋆ 47% (102/192) 50% (96/192) 49% (97/192) ⋆ 49% (98/192) ⋆ 45% (106/192)

Minimum 40% 38% 37% 34% 43% 42% 35% 36%
Mean 59% 57% 49% 46% 59% 59% 51% 49%
Maximum 74% 73% 66% 66% 75% 74% 64% 63%

In conclusion for RQ2, Domino-generated test suites did not change
mutation score following reduction. AVM-D-generated suites did
incur decreased scores, but only for seven schemas and not > 4%.
Answer to RQ3: Reduction and Mutation Analysis Runtime.

Our prior paper [4] established that, on the whole, the time taken
for STICCER-GRD to reduce test suites was more than regained in
mutation analysis in the majority of cases, thereby decreasing the
time needed to conduct mutation analysis overall. Table 5 shows
a similar trend for STICCER-HGS, where savings of minutes to
several minutes are possible, when comparing reduced test suites
with the original test suite. However, although Table 5 reports
many significant differences in times recorded for STICCER-HGS
and STICCER-GRD, the vast majority only correspond to a couple
of seconds, and therefore are almost practically negligible.

The exception to this is the iTrust schema, which has the largest
original test suite of 1517 test cases. Here, the overheads of the
additional algorithmic complexity of HGS compared to Greedy are
evident. HGS took a median of 11 minutes to reduce the AVM-D-
generated test suites for the iTrust schema, compared to only 2
minutes with Greedy reduction. As shown by Table 2, following
merging this results in smaller AVM-D-generated test suites on
average for STICCER-HGS compared to STICCER-GRD (631 test

Table 4: Median Mutation Scores

“S-HGS” is STICCER-HGS, “S-GRD” is STICCER-GRD, and “OTS” is Original Test Suite.
For space reasons, we omit the results for schemas that have no significant differences
with STICCER-HGS. Refer to Section 3 for the meaning of the symbols ,#, and ⋆.

AVM-D Domino

Schemas S-HGS S-GRD HGS Greedy OTS S-HGS S-GRD HGS Greedy OTS

BrowserCookies 86.0 #86.5 86.2 #86.5 ⋆#86.5 96.6 96.6 96.6 96.6 96.6
FrenchTowns 80.3 80.3 ⋆#81.1 80.3 ⋆#83.3 95.5 95.5 95.5 95.5 95.5
iTrust 83.6  83.6 83.6  83.6 ⋆#83.6 99.1 99.2 99.1 99.2 99.2
NistWeather 93.8 ⋆ 90.6 93.8 ⋆ 90.6 93.8 100.0 100.0 100.0 100.0 100.0
NistXTS749 88.0 ⋆#92.0 88.0 ⋆#92.0 ⋆#92.0 94.0 94.0 94.0 94.0 94.0
RiskIt 88.8 ⋆#89.3 88.8 ⋆#89.3 ⋆#89.3 99.5 99.5 99.5 99.5 99.5
UnixUsage 97.3 ⋆#98.2 97.3 ⋆#98.2 ⋆#98.2 100.0 100.0 100.0 100.0 100.0
WordNet 86.3 86.3 86.3 86.3 ⋆#87.4 99.0 99.0 99.0 99.0 99.0

cases as opposed to 646), but the Domino-generated test suites are
larger (297 as opposed to 231). Unsurprisingly, mutation analysis
times follow the reduced test suite sizes, since the larger the test
suite, the more work mutation analysis has to do. Overall, the
additional time taken by HGS for the AVM-D-generated test suites
is not sufficiently recovered in mutation analysis for the smaller
suites of STICCER-HGS, resulting in STICCER-GRD recording a
significantly faster time with AVM-D and Domino test suites.
In conclusion for RQ3, although our experiments record many sig-
nificant differences in timing, they are almost negligible in prac-
tical terms, except for the largest schema, iTrust. For this schema,
STICCER-HGS was significantly slower for both AVM-D and the
Domino-generated test suites. In the AVM-D case, STICCER-HGS
produces smaller test suites, but the additional time HGS needs to
do this is not recovered in the savings made by mutation analysis.

Overall Conclusions of the Computational Study. The evi-
dence suggests that STICCER’s merging mechanism works better
with the diverse Domino-generated tests, and the slightly larger set
of tests to choose from that arise from using Greedy. Yet, the results
for each schema are more nuanced. For some schemas, the more
heavily reduced test suites produced by HGS more than outweigh a
slightly less efficient secondary merging phase for STICCER-HGS,
particularly with those test suites generated by AVM-D.

The results of mutation analysis show a slight degradation of
mutation scores for test suites initially generated by AVM-D for all
reduction techniques, but no loss of mutant killing power for test
suites generated byDomino. This evidence suggests that STICCER’s
merging mechanism does not sacrifice fault-finding capability.

In terms of execution time, we find that STICCER-HGS produced
comparable timings to STICCER-GRD for reduction and the sub-
sequent mutation analysis. Timings were marginally faster with
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Table 5: Median Reduction and Mutation Times (Seconds)

Lower-is-better median time to reduce test suites (RT), assess the adequacy of the test suite by running mutation analysis, and the total of
the two (Total). In this table “OTS” refers to the Original Test Suite. Refer to Section 3 for the meaning of the symbols ,#, and ⋆.

AVM-D Domino

STICCER-HGS STICCER-GRD OTS STICCER-HGS STICCER-GRD OTS

Schemas RT MT Total RT MT Total Total RT MT Total RT MT Total Total

ArtistSimilarity 0.04 0.05 0.09 ⋆ 0.12 0.05 ⋆ 0.17 0.09 0.05 0.05 0.10 ⋆ 0.13 0.05 ⋆ 0.18 0.10
ArtistTerm 0.06 0.22 0.29 ⋆ 0.14 0.22 ⋆ 0.37 ⋆ 0.54 0.05 0.23 0.28 ⋆ 0.14 0.22 ⋆ 0.36 ⋆ 0.54
BankAccount 0.09 0.18 0.27 ⋆ 0.17  0.19 ⋆ 0.36 ⋆ 0.45 0.08 0.20 0.28 ⋆ 0.16 #0.19 ⋆ 0.34 ⋆ 0.46
BookTown 0.90 14.20 15.10 0.94 ⋆ 16.17 ⋆ 17.11 ⋆ 36.19 1.04 11.46 12.50 ⋆ 1.07 ⋆#10.85 ⋆#11.92 ⋆ 36.50
BrowserCookies 0.34 0.92 1.26 0.37 0.94 1.31 ⋆ 2.21 0.38 0.72 1.09 0.37 0.73 1.09 ⋆ 2.34
Cloc 0.07 0.07 0.14 ⋆ 0.15 0.07 ⋆ 0.22 ⋆ 0.27 0.08 0.12 0.20 ⋆ 0.15 ⋆#0.09 ⋆ 0.25 ⋆ 0.28
CoffeeOrders 0.25 1.21 1.46 ⋆ 0.31 1.20 ⋆ 1.51 ⋆ 2.96 0.22 1.14 1.35 ⋆ 0.29 ⋆#1.05 1.34 ⋆ 2.98
CustomerOrder 0.70 6.22 6.92 ⋆ 0.80 ⋆ 6.68 ⋆ 7.47 ⋆ 9.74 0.76 4.35 5.10 ⋆ 0.84 ⋆ 4.56 ⋆ 5.40 ⋆ 9.78
DellStore 1.68 1.86 3.54 ⋆#1.42  1.93 ⋆#3.35 ⋆ 8.04 1.75 3.37 5.12 ⋆#1.46 ⋆#3.22 ⋆#4.68 ⋆ 8.40
Employee 0.15 0.14 0.29 ⋆ 0.20 ⋆#0.13 ⋆ 0.32 ⋆ 0.34 0.14 0.11 0.25 ⋆ 0.18 0.12 ⋆ 0.30 ⋆ 0.36
Examination 1.72 1.37 3.09 ⋆#1.06 1.39 ⋆#2.45 ⋆ 4.42 1.73 1.06 2.79 ⋆#1.11 #1.00 ⋆#2.12 ⋆ 4.48
Flights 0.20 0.61 0.81  0.30 0.61  0.91 ⋆ 1.60 0.37 0.71 1.08 ⋆ 0.41 #0.68 1.09 ⋆ 1.68
FrenchTowns 0.12 1.51 1.62 ⋆ 0.23 #1.46 1.69 ⋆ 2.43 0.14 1.23 1.37 ⋆ 0.23 1.23 ⋆ 1.46 ⋆ 2.44
Inventory 0.04 0.04 0.08 ⋆ 0.12 ⋆ 0.05 ⋆ 0.17 ⋆ 0.10 0.05 0.04 0.09 ⋆ 0.12 0.04 ⋆ 0.17  0.10
IsoFlav_R2 0.88 2.82 3.70 ⋆#0.70 2.83 ⋆#3.52 ⋆ 9.80 0.96 2.79 3.75 ⋆#0.75 2.72 ⋆#3.47 ⋆ 10.20
Iso3166 0.03 0.02 0.06 ⋆ 0.11 0.02 ⋆ 0.13 ⋆#0.04 0.04 0.03 0.06 ⋆ 0.11 0.03 ⋆ 0.13 ⋆#0.05
iTrust 653.16 936.61 1589.77 ⋆#150.17 ⋆ 959.31 ⋆#1109.48 ⋆ 2297.86 634.77 522.86 1157.63 ⋆#157.23 ⋆#428.57 ⋆#585.80 ⋆ 2330.02
JWhoisServer 1.90 5.39 7.29 ⋆#1.64 ⋆ 5.62 7.25 ⋆ 8.91 2.11 4.28 6.39 ⋆#1.86 ⋆#3.88 ⋆#5.74 ⋆ 9.34
MozillaExtensions 5.16 6.95 12.12 ⋆#2.02 ⋆#6.62 ⋆#8.64 ⋆ 25.52 5.26 6.36 11.62 ⋆#2.38 ⋆#5.39 ⋆#7.78 ⋆ 26.61
MozillaPermissions 0.09 0.10 0.18 ⋆ 0.15 ⋆#0.08 ⋆ 0.23 ⋆ 0.23 0.08 0.10 0.18 ⋆ 0.15 ⋆#0.07 ⋆ 0.22 ⋆ 0.24
NistDML181 0.07 0.10 0.18 ⋆ 0.15 ⋆ 0.11 ⋆ 0.26 ⋆ 0.36 0.08 0.12 0.20 ⋆ 0.15 ⋆ 0.12 ⋆ 0.28 ⋆ 0.38
NistDML182 3.64 2.43 6.07 ⋆#1.93 ⋆#2.22 ⋆#4.15 ⋆ 14.60 3.66 2.59 6.25 ⋆#2.00 ⋆#2.43 ⋆#4.43 ⋆ 14.99
NistDML183 0.06 0.09 0.15 ⋆ 0.14  0.09 ⋆ 0.23 ⋆ 0.28 0.07 0.10 0.17 ⋆ 0.14 0.10 ⋆ 0.25 ⋆ 0.29
NistWeather 0.15 0.30 0.45 ⋆ 0.22 ⋆#0.29  0.51 ⋆ 0.74 0.18 0.26 0.44 ⋆ 0.23 ⋆#0.25  0.48 ⋆ 0.76
NistXTS748 0.04 0.04 0.08 ⋆ 0.12 ⋆#0.04 ⋆ 0.16 #0.08 0.04 0.04 0.08 ⋆ 0.11 0.04 ⋆ 0.15 0.08
NistXTS749 0.10 0.18 0.28 ⋆ 0.17 ⋆ 0.20 ⋆ 0.37 ⋆ 0.39 0.08 0.17 0.25 ⋆ 0.17 0.16 ⋆ 0.33 ⋆ 0.40
Person 0.03 0.09 0.12 ⋆ 0.10 0.09 ⋆ 0.19  0.16 0.08 0.08 0.16 ⋆ 0.15 ⋆#0.07 ⋆ 0.22 0.16
Products 0.08 0.42 0.50 0.14 0.42  0.57 ⋆ 1.04 0.12 0.44 0.56 ⋆ 0.18 0.44 ⋆ 0.62 ⋆ 1.06
RiskIt 1.85 21.23 23.08 ⋆#1.41 ⋆ 23.15 ⋆ 24.57 ⋆ 44.40 1.93 18.22 20.15 ⋆#1.59 ⋆ 18.90  20.49 ⋆ 45.91
StackOverflow 1.34 0.93 2.27 ⋆#0.93 ⋆ 0.97 ⋆#1.90 ⋆ 5.58 1.51 1.74 3.25 ⋆#1.16 ⋆#1.42 ⋆#2.58 ⋆ 5.76
StudentResidence 0.09 0.20 0.29 ⋆ 0.16 0.20 ⋆ 0.36 ⋆ 0.43 0.07 0.17 0.24 ⋆ 0.14 0.17 ⋆ 0.32 ⋆ 0.44
UnixUsage 1.04 5.69 6.73 ⋆#0.92 ⋆ 6.21 ⋆ 7.13 ⋆ 12.25 1.07 4.15 5.22 ⋆#0.95 ⋆#3.83 ⋆#4.79 ⋆ 12.34
Usda 1.88 2.71 4.59 ⋆#1.39 ⋆ 2.78 ⋆#4.17 ⋆ 15.55 2.02 5.31 7.33 ⋆#1.52 ⋆#4.15 ⋆#5.68 ⋆ 16.44
WordNet 0.34 1.77 2.11  0.37 ⋆ 1.86 ⋆ 2.23 ⋆ 3.89 0.29 1.77 2.07 ⋆ 0.38 ⋆#1.69 2.07 ⋆ 3.93

STICCER-HGS for smaller database schemas, yet STICCER-GRD
had the upper hand with the largest schemas, because of the addi-
tional time required by HGS to reduce suites in the first phase.

4 HUMAN STUDY

To investigate the effect of STICCER’s test case merging mecha-
nism on human oracle cost, we designed a Human Study in which
participants acted as “testers” who had to manually inspect test
suites that had been processed by STICCER. As a control, we chose
the (unmerged) test suites reduced by HGS, as they, in general, rep-
resent the smallest non-merged test suites, thereby making them
suitable for the scope of a human study. As such, to allow for a
direct comparison, we chose to use STICCER-HGS over STICCER-
GRD to study the effect of test merging. A relational database test
case attempts to satisfy or violate an integrity constraint with INSERT

statements that are either accepted or rejected by the DBMS. In our
study, therefore, participants had to read a test case and identify
the INSERT statement(s) that would be rejected. We measured their
accuracy and efficiency (i.e., time duration) while they performed
this task, with the aim of answering two research questions:

RQ4: Test Inspection Accuracy. How accurate are humans at
inspecting the merged and reduced tests produced with STICCER-
HGS compared to the reduced and non-merged tests made by HGS?

RQ5: Test Inspection Duration. How long does it take for hu-
mans to inspect themerged and reduced tests produced by STICCER-
HGS compared to the reduced and non-merged tests made by HGS?

We generated test suites using AVM-D and Domino for the
schemasArtistSimilarity, Inventory,NistXTS748, and Person, as listed
in Table 1, and applied both HGS and STICCER-HGS. We deliber-
ately picked these schemas to ensure all different types of integrity
constraint were represented and a variety of data types, while also

ensuring relatively small test suite sizes (i.e., under 30 test cases) so
that the test suites used would be feasible for a human to inspect
during the study in a reasonable amount of time.

We used SchemaAnalyst to generate test suites using the Clause-
AICC+ANCC+AUCC coverage criterion combination with the mu-
tated versions of each schema. In the study, we asked participants
to assess these test suites with respect to the original schemas. We
used mutants rather than original schemas for test suite generation
to introduce a degree of randomness in the accept/violate pattern
of the INSERT statements of each suite, enabling a fairer comparison
between their merged and reduced versions. We randomly selected
the mutant schemas summarized in Table 6 from a pool of mutants
generated using the operators of Wright et al. [56].

To measure the accuracy and duration of human inspection, we
integrated both the original schema and the mutant’s tests into a
web questionnaire. Each test case forms an individual “question”,
where participants are asked to select the INSERT statements in each
test that the DBMS would reject. If the participant believed that
none of the INSERTs should be rejected, they could select an option
entitled “None of them”. If a participant could not decide, then
they could select the “I don’t know” option. Our thinking behind
both options was to prevent random guessing that could negatively
influence the results. Furthermore, to prevent confounding results,
we also added a mechanism that deselects checkboxes if an option
was selected that would contradict another option. For instance,
if a participant selected a series of INSERTs and then continued to
pick either “I don’t know” or “None of them” (i.e., they seemingly
changed their mind), then the INSERTs are deselected, or vice versa.

At the end of questionnaire, participants were presented with an
online exit survey that asked about the schemas that they thought
to be the easiest and hardest to inspect. The participants could also
provide general feedback regarding the questionnaire, ultimately
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Table 6: The Mutated Schemas Used in the Human Study

Schema AVM-D Domino

ArtistSimilarity Added a NOT NULL to a new column Added a NOT NULL to a new column
Inventory Changed the column of a UNIQUE Changed the column of a UNIQUE
NistXTS748 Added a new UNIQUE to a new column Added a single-column primary key
Person Removed primary key Changed primary key to another column

helping us to analyze the results and further characterize a human’s
perception of the database schemas and their reduced test suites.

In total, we recruited 27 participants from the student body at
the University of Sheffield, studying Computer Science (or a related
degree) at either the undergraduate or PhD level. We selected par-
ticipants using a process based on a quiz where individuals had to
say whether four INSERTs would be accepted or rejected for a table
with three constraints. We excluded potential participants if they
got more than one wrong answer, thus ensuring that the study only
involved people who were likely to be capable of assessing the tests.
The participants’ level of SQL experience — information that we
collected as part of the questionnaire — varied between less than
a year for four people to over four years for eight. We financially
compensated participants with £5 cash and a £10 book voucher.

The study had two within-subject variables (i.e., the database
schemas and the generation techniques) and one between-subject
variable (i.e., the specific reduced test suites). We assigned partici-
pants randomly to one of four groups, so that there were at least
six participants in each group. Each group inspected each schema
with each test suite, reduced by either HGS or STICCER-HGS.

To answer RQ4, we calculated participants’ test inspection ac-
curacy scores based on the number of failing INSERT statements
correctly selected over all the INSERTs (i.e., those that the DBMS
accepted or rejected). We report the accuracy score’s descriptive
statistics (i.e., minimums, maximums, means, and medians).

To answer RQ5, we reported the same descriptive statistics for
the duration of time that a human took to inspect each test suite.

Unfortunately, due to the small sample of participants and data-
base schemas, we cannot reliably apply statistical significance tests.
We leave this as an item for future work, as explained in Section 6.

Threats to Validity. The external validity of the selected schemas
and its generated tests may provide results that are not evident for
real schemas. We tried to mitigate this by randomly selected four
schemas that include common integrity constraints and data types
in SQL schemas [46]. We also used an open-source tool to generate
the tests, SchemaAnalyst [39], with the most effective combination
of adequacy criteria [42], thereby ensuring all integrity constraints
were thoroughly tested by the generated test suites.

We intentionally selected a relatively small number of small
schemas to ensure participants could complete the questionnaire
in a reasonable time and to avoid potential fatigue effects affecting
our results. This did, however, lead to a small sample size that was
insufficient for statistical hypothesis testing, causing us to fall back
on descriptive statistics. In the future, we recommend replicating
this study with more data points to increase the statistical power.

Another validity threat is that of learning effects, whereby par-
ticipants become better at answering questions as the questionnaire
progresses. We mitigated this concern by randomizing the presen-
tation order for the questions and the database schemas.

Finally, the majority of this study’s participants are students.
While this can be considered another threat, this approach has been

Table 7: Descriptive Statistics of Scores and Durations

The accuracy percentage scores and the duration of time in seconds the humans needed to inspect
the reduced test suites. Hence, the higher percentage score and the lower duration is better. The
variable P denotes the number of participants in each group, T and I are the test suite size and
number of INSERTs in the test suite, respectively. Finally, S-HGS denotes STICCER-HGS.

Score (%) Duration (Minutes)

Schema Generator Reduction P T I Min Mean Median Max Min Mean Median Max

ArtistSimilarity AVM-D HGS 7 10 22 70.0 87.4 90.0 100.0 1.6 4.0 3.2 6.5
S-HGS 6 8 20 79.0 88.0 91.0 91.0 2.6 4.9 4.0 8.0

Domino HGS 7 10 22 80.0 91.0 90.0 100.0 3.7 5.7 4.5 10.3
S-HGS 7 8 20 37.0 79.5 87.0 100.0 1.9 4.1 3.6 6.5

Inventory AVM-D HGS 7 10 16 70.0 88.6 85.0 100.0 2.7 5.7 5.4 9.6
S-HGS 7 5 12 40.0 73.4 72.0 93.0 2.1 3.2 2.7 5.7

Domino HGS 7 7 12 78.0 94.6 100.0 100.0 1.7 3.4 3.5 5.8
S-HGS 6 6 12 25.0 83.3 100.0 100.0 1.6 2.6 2.1 5.1

NistXTS748 AVM-D HGS 6 9 14 66.0 86.7 88.5 100.0 1.1 3.0 3.3 4.6
S-HGS 7 5 11 58.0 86.9 95.0 100.0 1.8 4.1 4.6 6.0

Domino HGS 7 8 12 37.0 83.7 87.0 100.0 1.5 2.4 1.9 4.7
S-HGS 7 6 12 75.0 84.1 83.0 91.0 2.2 4.6 3.7 9.3

Person AVM-D HGS 7 11 13 31.0 85.9 90.0 100.0 1.8 4.7 3.5 10.6
S-HGS 7 3 12 88.0 95.7 100.0 100.0 1.9 4.1 2.7 9.1

Domino HGS 6 14 19 53.0 90.8 100.0 100.0 3.8 4.9 5.0 6.3
S-HGS 7 6 18 33.0 88.3 97.0 100.0 2.8 4.3 4.0 6.5

All Schemas AVM-D HGS 27 40 55 31.0 87.1 90.0 100.0 1.2 4.4 4.2 10.6
S-HGS 27 21 55 40.0 85.9 91.0 100.0 1.8 4.1 3.3 9.1

Domino HGS 27 39 65 37.0 90.0 95.0 100.0 1.5 4.1 4.0 10.3
S-HGS 27 26 62 25.0 83.8 91.0 100.0 1.6 3.9 3.5 9.3

deemed as acceptable and in broad alignment with prior experi-
ments in software engineering by other researchers [22].

Measuring a human’s understanding of tests is subjective and a
threat to the construct validity that we addressed by determining
how successful human testers were at identifying which INSERTs are
rejected by the database for violating an integrity constraint.

Another threat is that the participants might not be accustomed
to the questionnaire interface’s to determine the outcome of a
schema test case. We addressed this concern by providing a tutorial
prior to the completion of the actual questionnaire, showing con-
cepts about testing integrity constraints and the study’s procedure.

It is also possible that testers might have better knowledge of
a database schema that they designed than the participants in the
Human Study. To address this concern, we allowed participants the
opportunity to study each schema to properly understand it before
having to answer the questions about the schema’s test suite.
Answer to RQ4: Test Inspection Accuracy. Table 7 shows the
descriptive statistics for the accuracy scores of and time duration by
the participants for each test suite that they evaluated. On average,
participants were more accurate with the test suites reduced by
HGS compared to STICCER-HGS. The mean difference in accuracy,
however, for test suites was only as large as 15.2% (for the Inven-
tory schema with the test suite generated by AVM-D), with the
largest median difference as 13.0% (again for Inventory with the test
suite generated by AVM-D). Overall, no clear pattern emerges, and
it would seem that the smaller test suites that were reduced and
merged by STICCER-HGS do not give it an advantage over HGS.
This suggests that testers prefer smaller, focused test cases as much,
if not more than, fewer but potentially more complex test cases.
In conclusion for RQ4, the smaller test suites reduced and merged by
STICCER-HGS give it no clear advantage over test suites reduced by
HGS only, suggesting that fewer, but longer, tests do not necessarily
improve the accuracy of humans when they inspect test cases.
Answer to RQ5: Test Inspection Duration. Table 7 shows the
duration descriptive statistics of each test suite inspection. For
10 of the 16 schema-test generator combinations, the participants
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were faster with test suites reduced and merged with STICCER-
HGS, as opposed to simply being reduced with HGS. This table
also shows that that the overall mean and median averages favor
STICCER-HGS. These results suggest that participants can process
the smaller number of test cases offered by STICCER-HGS more
quickly, on the whole, even if they cannot do it more accurately.
Given that STICCER-HGS test cases are longer, due to the merging,
it would seem that there is more opportunity for participants to
make mistakes, and/or become over-confident in their analysis.

In conclusion for RQ5, the evidence suggests that, compared to du-
rations with tests from HGS, participants were faster at inspecting
the smaller test suites reduced and merged by STICCER-HGS.

Overall Conclusions of theHuman Study. The results from this
study suggest that, while human testers are not more accurate at
analyzing a smaller number of longer tests, there is some evidence
that they are faster. One explanation for this is that a tester may
subconsciously spend the same amount of time on a test, regardless
of its length, therefore being faster overall with smaller test suites.
Yet, this constant amount of time is a disadvantage for compara-
tively longer tests, as there is more to inspect, and as such aspects of
these test cases may be overlooked, leading to mistakes. Although
interesting, these results suggest the need for a large-scale study.

5 RELATEDWORK

Test suite reduction methods aim to make regression testing
more cost-effective [26]. As noted by Yoo and Harman [59], many
reduction methods (e.g., additional greedy and HGS [9, 11, 20])
adopt some form of a greedy heuristic. Prior experimental studies
found that, by removing redundant tests, both HGS and Greedy
decreased the size [10, 60] and execution cost [23, 35, 36] of the
test suite. Other work has shown the benefits of using, for instance,
integer linear programming [8, 21] and evolutionary algorithms [38,
58] to reduce a test suite. Notably, unlike this paper’s focus on
reducing tests for database schemas, all the aforementioned work
considered test suite reduction for traditional programs.

Although efficient regression testing is important [26], the cost
for humans to evaluate test outcomes is also a critical consideration.
For instance, prior studies found that, while manually written tests
are hard to understand [33], they often are more readable than au-
tomatically generated ones [16]. Others characterized the difficulty
that testers face when understanding and maintaining automated
tests [14, 47]. Given these results, recent methods seek to minimize
tester effort through test documentation [32, 33, 37], readability
improvement [1, 14, 15], and test visualization [12, 48]. Yet, unlike
this paper, none of the aforementioned approaches focused on the
costs that humans incur when inspecting database schema tests.

This paper’s hybrid test suite reduction method, called STICCER-
HGS, was inspired by STICCER, our recent hybrid test suite reduc-
tion method for database schemas [4]. Moreover, while our previous
study involving humans experimentally determined which type of
automatically generated test data best supported testers [3], this
prior paper did not, unlike the current one, involve humans in the
study of reduced test suites. Finally, there are several prior meth-
ods for the regression testing of database applications, including
a greedy approach for test suite reduction [27]. Other papers pre-
sented greedy methods for reducing the database application test

suites comprised of SQL SELECT queries [54]. Notably, neither of the
two aforementioned papers employed human testers to study the
benefits of the presented test suite reduction techniques.

6 CONCLUSIONS AND FUTUREWORK

Since many software applications interact with a database that
has a difficult-to-test schema, testers may use automated test data
generation techniques, likeDomino and AVM-D, to create a schema
test suite. Although these generators obviate the need for manual
testing, the test suites that they produce often have many tests with
numerous, and sometimes similar, database interactions, suggesting
the need for test suite reduction. Since our prior work proposed
STICCER, a hybrid method that combined Greedy test suite reduc-
tion with a merging approach for database schema testing [4], this
paper presents both a computational and a human study investi-
gating a new hybridization that combines STICCER-based merging
with test suite reduction by the Harrold-Gupta-Soffa method.

Considering four test suite reduction methods (i.e., Greedy, HGS,
STICCER-GRD, and STICCER-HGS), two test data generators (i.e.,
AVM-D and Domino), and 34 database schemas, this paper’s Com-
putational Study answered three research questions. Focused on
assessing the capability of these reduction methods to quickly de-
crease a test suite’s size while preserving its mutation adequacy,
the Computational Study reveals that, while there are benefits to
using either Greedy or HGS in combination with STICCER, neither
STICCER-GRD nor STICCER-HGS are a strictly dominant method.
That is, although there was prior evidence showing that HGS was
superior to Greedy at reducing database schema test suites, the
surprising conclusion of this study is that there is no significant
benefit to hybridizing STICCER with HGS instead of Greedy.

Incorporating 27 participants who had to manually inspect re-
duced test suites and answer questions about their behavior, the
Human Study investigated the influence that STICCER’s test case
merging mechanism has on human oracle costs. Since this paper’s
focus is on the benefits attributable to HGS, this study compared
HGS to STICCER-HGS, answering two research questions. This
paper’s Human Study reveals that, compared to those produced by
HGS, the reduced test suites of STICCER-HGS may help humans
to perform test inspection faster, but not always more accurately.

Along with confirming the benefits from hybridizing STICCER
with either Greedy or HGS, this paper’s two studies suggest that,
while test suite reduction may make some schema testing tasks (e.g.,
test adequacy assessment with mutation analysis) more efficient, it
may not always benefit the humans testers who inspect the reduced
test suites. Given these results, we plan to investigate new STIC-
CER hybridizations that leverage alternative test suite reduction
methods (e.g., [34, 49, 52, 60]) that consider, for instance, both the
requirement coverage and execution time of a test. We will also con-
duct new experiments with both additional database schemas and
more human subjects, including testers from industry who have
experience with relational databases. To ensure that any follow-on
studies involving human testers yield results amenable to statistical
analysis, we also intend to incorporate a greater variety of schema
mutations. Building on the insights from this paper’s studies, our
ultimate goal is to develop fast reduction methods for database
schema test suites that decrease suite size and runtime while both
maintaining test adequacy and supporting humans testers.
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